https://wiki.teltonika-gps.com/view/Making Custom BLE Sensor configuration _and preset

Making Custom BLE Sensor configuration
and preset

Main Page > Frequently Asked Questions - FAQ > Making Custom BLE Sensor configuration and preset
Il

Contents

1 Disclaimer

2 Introduction

3 Extracting RAW data

4 Parsing Data according to protocol Example 1

5 Parsing Data according to protocol Example 2

¢ 6 Creating Presets

¢ 7 Including Presets in the next base configqurator release

Disclaimer
=]

If you are not using Bluetooth®, please consider turning it off or change Bluetooth® PIN to
remove potential risks.

If you are using Bluetooth® we strongly recommend using AES encryption for enhanced security.

Introduction

The first thing you have to know before configuring a sensor is data protocol.

Without data protocol, you can only attempt to extract raw data from the sensor, by configuring it to
save all the data sent by the sensor into IO elements.

Extracting RAW data

In the below examples, we are trying to extract data from two TOPFLYtech BLE 5.0 sensors:

1. Temperature, humidity, and light sensor.
2. Door, temperature sensor.

Prerequisites:

1. BT radio is enabled in the Bluetooth® section of the configurator.
2. Codec8extedended set in the System section of the configurator.

To save sensor incoming data to IO you should configure:

¢ MAC = MAC of the sensor -> needed to establish a connection with the sensor.

https://wiki.teltonika-gps.com/view/Main_Page
https://wiki.teltonika-gps.com/view/Frequently_Asked_Questions_-_FAQ

e Type = FE -> any.

¢ Data Size = 128B -> maximum available in IO.

e Action = Save -> save to IO element.

¢ IO = custom -> We do not know the protocol yet, so we use custom that can be used for HEX
data.

IO tab of configurator: enable BLE custom X where X is the sensor number in Bluetooth® 4.0
section.

Note: you might have to configure more rows if the sensor is sending more than 128B of data.

(]

Once we save the configuration and observe records made by the device we will see that AVL ID for
BLE custom 1 will have raw sensor data:

0x1416FFBF1002140EFEBF9D7A7A4164090E350001000509636F6C64

Parsing Data according to protocol Example 1

We can parse this according to the protocols provided by the vendor/manufacturer of the sensor, if
not provided during the purchase please contact the vendor for the protocol. The full protocol
document for our example can be found here:File:Protocol.xlIsx

Raw data assigned to corresponding protocol parts:

. Ambient Sesnor
i_l/lessage Hardware Flrmyvare Boattery "l;emperature I-gumldlty Light Alarm Length Name Sesnor
eader Version Version (%) (°C) (%) Status Header Name
1416FFBF1002 14 0E FEBF9D7A7A41 64 09 OE 35 00 01 00 05 09 636F6C64

Parsed raw data:

Protocol explanation Raw data Parsed Data

Message Header 1416FFBF1002 Fixed value

Hardware Version 14 Version 1.4

Firmware Version 0E Version 14

ID FEBF9D7A7A41 ID=MAC=FEBF9D7A7A41

64(Hex)=100(Dec)
Then battery percent=100%

09 OE(Hex) to BIN:
0000 1001 0000 1110
Bit 15=0, +
Bit 15=1, -
Temperature (°C) 09 OE Bit 15 is 0, so it's a positive temperature
Bit 0-Bit14, temperature valueBit 0-14 convert to DEC is
2318
Then 2318/100=23.18
The temperature is +23.18°C

35(Hex)=53(DEC)
The humidity is 53%

Battery (%) 64

Humidity (%) 35

http://wiki.teltonika-gps.com/index.php?title=File:Configuration_for_raw_data.png&filetimestamp=20210420080926&
http://wiki.teltonika-gps.com/view/File:Protocol.xlsx

Fixed Value=0
Ambient Light Status 00 01 01=light on
It means the sensor environment has light

00 = this is not an alarm message.

00: no alarm

Alarm 00 01: alarm
02: high-temperature alarm
04: low-temperature alarm
06: low battery alarm

05=there are 5 bytes from byte 23
the length will be changed depending on the sensor name.

Length 05 The sensor name is max 8 bytes. So the max length value is
09

Sesnor Name Header 09 Fixed Value
Convert Hex to ASCII

Sesnor Name 636F6C64 63=C 6F=0 6C=L 64=D

So the sensor name is cold

According to the data from the sensor, and available IO elements, you can create a preset for the
Sensor.

In our case, we are interested in battery level, humidity, and temperature.

We select all type fields to be FE, and data offset and size are calculated according to the protocol,
visual example below:

TSTH1-B Broadcasting Data Format(via BLE)

Hardware | Firmware Temperatur
Message Header D Battery (% Humidity (%
& Version | Version v (%) e(°c) ty (%)
HEX ex | HEx | Hex | Hex | mex HEX HEX HEX HEX HEX [HEX HEX
1Byte 1Byte | 1Byte | 1Byte | LByte |1Byte| LByte 1eyte || 6Bytes | 1Byte 2Bytes 18ytes
1 2 3 4 5 6 7 3 9 Jw o [ne]e]el] 15 16 | 17 18
ox1a 0x16 | OXFF | OXBF | Ox10 | Ox02 | Ox1L ox12 OXFC [OXC5 | Ox2C | 00D | Ox58 [OxFo | 0x62 ox0A [oxsF ox18
6 Bytes size according to the ID size Bit15=0, +
Bit15=1, -
Range/A-
) D Range: 0-100 o Range: 0-100
] Ox11=Versio Bit0-Bit14,
Fixed V{iue . N !
nl. emperatur
L2=versi FCC52C0DS8F0 0x62-98% P 0x18=27%
5 e value
Offset: on
6 Bytes header Temperatur

1 Byte HW ver
1 Byte FW ver
Connection #1 Total:

8 Bytes offset

BLE connectionless functionalities

Mode Settings
Working mode MAC FEBFIDTATA41
I
1st Sensor
[B [e)
FE 83 6 % Malch v None v FEBFIDTATA41 Little Endian v 1% 0y
FE 14 < 137 Save v Battery v Little Endian v 18 03
FE 15 & 2 3 Save v Temperature v Little Endian v 18 0%
FE 178 1 S| Save ~ Humidity v Little Endian v 1% 03
0e 0 2| Match v None v Little Endian v 13 0y

*Note: Match field is not necessary for every sensor, it's used when the sensor sends a few different
structure packets to match the packet needed.

If you specify the match field, make sure that sensor does not have dynamic (variable) information in
protocols for matched data otherwise it might be filtered until it matches the exact value specified in
the match field.

http://wiki.teltonika-gps.com/view/File:Configuring_according_to_protocol.png

Protocol explanation Raw data Type Offset Size Action IO

Message Header 1416FFBF1002 6 6

Hardware Version 14 1 1

Firmware Version OE 1 1

ID FEBF9D7A7A41 FE 6+4+1+1=86 Match None
Battery (%) 64 FE 8+6=14 1 Save Battery
Temperature (°C) 09 OE FE 15 2 Save Temperature
Humidity (%) 35 FE 17 1 Save Humidity
Ambient Light Status 00 01

Alarm 00

Length 05

Sesnor Name Header 09

Sesnor Name 636F6C64

Once everything is configured it should look as follows:

(]

Pictures of the sensor being read in the sensor app and configurator:

In app:
]

In configurator:

(]

Parsing Data according to protocol Example 2

Raw sensor data:
0x1216FFBFOE(04120EFF779695EE4B640A730100080954534454312D42

Raw data assigned to corresponding protocol parts:

. Sesnor
Message Hardware Flrmware Eiattery "lz)emperature Door Alarm Length Name ~Sesnor Name
Header Version Version (%) (°C) Status
Header
1216FFBFOE04 12 0E FF779695EE4B 64 0A73 01 00 08 09 54534454312D42

Parsed raw data:

Protocol explanation Raw data Parsed Data
Message Header 1216FFBFOEO4 Fixed value
Hardware Version 12 Version 1.2
Firmware Version 0E Version 14

ID FF779695EE4B ID=MAC=FF779695EE4B

http://wiki.teltonika-gps.com/view/File:In_configurator1.png
http://wiki.teltonika-gps.com/view/File:Humidity_topfly.png
http://wiki.teltonika-gps.com/view/File:Data_in_configurator.png

64(Hex)=100(Dec)
Then battery percent=100%

09 OE(Hex) to BIN:
0000 1010 0111 0011
Bit 15=0, +
Bit 15=1, -
Temperature (°C) 0A 73 Bit 15 is 0, so it's a positive temperature
Bit 0 - Bit 14, temperature valueBit 0 - Bit 14 convert to
DEC is 2675
Then 2775/100=26.75
The temperature is +26.75°C

01 = Door open

Battery (%) 64

Door Status 01
0x00 = Door Closed
0x01 = Door Open

00 = this is not an alarm message.

00: no alarm

01: alarm

02: high-temperature alarm
04: low-temperature alarm
06: low battery alarm

05=there are 5 bytes from byte 23

the length will be changed depending on the sensor name.
The sensor name is max 8 bytes. So the max length value is
09

Sesnor Name Header 09 Fixed Value

Convert Hex to ASCII
Sesnor Name 54534454312D42 So the sensor name is TSDT1-B

Alarm 00

Length 08

Once everything is configured it should look as follows:
(*IPictures of the sensor being read in the sensor app and configurator:

In app:
(]

in configurator:

Door open:

=]

Door closed:

B
Creating Presets

After the configuration is finished you can save the preset, using the save button:*]

http://wiki.teltonika-gps.com/view/File:Final_configuration_in_configurator_door_sensor.png
http://wiki.teltonika-gps.com/view/File:Door_open_door_closed.png
http://wiki.teltonika-gps.com/view/File:Door_open.png
http://wiki.teltonika-gps.com/view/File:Door_closed.png
http://wiki.teltonika-gps.com/view/File:Saving_preset.png

Saved presets are found at:
C:\Users\<your username>\Documents\Presets

They can be shared with other engineers, they just have to save the received preset to same location
C:\Users\<your username>\Documents\Presets to be able to load it in the configurator.

Including Presets in the next base configurator release

On the client's request or based on TPS insights about the client's use case, it might be needed to
add the sensors to our available presets with the next configurator release. Check with your sales
manager about the conditions and information needed to include the preset on the next release.

