Manual CAN Speed & Ignition source explained

 $\underline{Main\ Page} > \underline{E\text{-Mobility\ Trackers}} > \underline{TFT100} > \underline{TFT100\ FAQ} > \underline{Manual\ CAN\ Speed\ \&\ Ignition\ source\ explained}$

Contents

- 1 Manual CAN Basic parameters purpose
- 2 Configuration explained for Ignition
- 3 Configuration explained for Speed

Functionality description is based on latest firmware - 55.01.02.Rev.01.

Manual CAN Basic parameters purpose

Manual CAN basic parameters can be used to detect Speed or Ignition, when Speed / Ignition sources are set to ${\bf CAN}$ in device's configuration.

Configuration explained for Ignition

To use **Manual CAN** functionality for Ignition detection, **Ignition Source** parameter must have **CAN** option enabled.

Additionally, since this functionality works only with **Manual CAN** protocol, **Manual CAN** option should be enabled as well under **CAN Protocol** parameter.

Further configuration, to extract Ignition information from a **CAN message** is done under **Manual CAN Settings** section in configurator.

• **Ignition Manual CAN Slot** defines with which **Manual CAN slot** a CAN message containing information about Ignition will be captured.

• Ignition Data Mask defines which bits from incoming CAN message are responsible for

ignition information. In other words - Ignition Data Mask parameter defines which data mask will be applied to received CAN data.

Ignition Data Mask parameter is 8 byte HEX value.

Parameter Id	Name	Value		
rarameter iu	Name	Min	Max	
322	Ignition Data Mask (000000000000000000000000000000000000000	FFFFFFFFFFFFFF	

• **Ignition Range Low** defines lowest value limit to detect ignition (if ignition detection has several states)

Daramatar Id	Name Min	Value			
Parameter Id		Max	Default		
323	Ignition Range Low (0	18446744073709551615	1	

• **Ignition Range High** defines highest value limit to detect ignition (if ignition detection has several states)

Parameter Id	Name		Value		
Parameter iu		Min	Max	Default	
324	Ignition Range High	0	18446744073709551615	1	

Example:

Ignition information data value will be *Received Data Value* **AND** *Data Mask*.

Let's say that **7th byte of 8 bytes CAN message** is responsible for **ignition information**, *Received Data Value* would be 0x11223344556677**01**.

Since only Ignition value is needed and it is located on 7th byte of previous CAN message, 000000000000FF *Data Mask* should be applied.

Configuration explained for Speed

×

To use **Manual CAN** functionality for Speed monitoring, **Speed Source** parameter must have **CAN** option enabled.

Additionally, since this functionality works only with **Manual CAN** protocol, **Manual CAN** option should be enabled as well under **CAN Protocol** parameter.

Further configuration, to extract Speed information from a **CAN message** is done under **Manual CAN Settings** section in configurator.

• **Speed Manual CAN Slot** defines with which **Manual CAN slot** a CAN message containing information about Speed will be captured.

• **Speed Data Mask** defines which **bits** from incoming **CAN message** are responsible for **speed information**. In other words - Speed Data Mask parameter defines which data mask will be applied to received CAN data.

Speed Data Mask parameter is **8 byte HEX** value.

Daramatar Id	Name	Value			
Parameter Id		Min	Max		
326	Speed Data Mask	0000000000000000	FFFFFFFFFFFFFF		

• Speed Offset defines offset which will be substracted from calculated Speed value.

Daramatar Id	Nama	Value			
Parameter Id	Name	Min	Max	Default	
327	Speed Offset -2	2147483648	214748364	7 0	

• **Speed Coefficient** defines coefficient which raw CAN value will be multiplied with.

Parameter Id	Name		Value		
rarameter it	i Naille	Min	Max	Default	
328	Speed Coefficient	0.000001	1000000	1	

Example:

Speed information data value will be Received Data Value AND Data Mask.

Let's say that **7th byte of 8 bytes CAN message** is responsible for **speed information**, *Received Data Value* would be 0x11223344556677**01**.

Since only Speed value is needed and it is located on 7th byte of previous CAN message, 000000000000FF *Data Mask* should be applied.

In this case, incoming CAN message would hold only our masked Speed information - $0 \times 00000000000000000000000000000000$					