Green Driving Solution

From Wiki Knowledge Base | Teltonika GPS
Main Page > General Information > Usage scenarios > Green Driving Solution

Project description

Growing world population and development of new technologies contribute to the growth in use of transport. Driving style is one of the factors directly influencing fuel consumption and vehicle life, e.g. aggressive acceleration, harsh braking, harsh cornering and over speeding. Inefficient driving produces more exhaust gas emissions, thus, increasing the negative environmental impact on our planet.

What you need for a solution?

  • All Teltonika FM devices are compatible with this use case.
  • The SIM card in order to receive data to Your server.
  • Teltonika Configurator to set up FM device correctly for the solution.
  • FOTA WEB to remotely send the configuration to the device.
  • BTAPP / Driver application to monitor and score driver behavior. Real time events notifications about harsh acceleration, braking, cornering, over speeding, idling and RPM. Solution designed to improve driver behavior and productivity.

Installation

It is good to know that this functionality is supported by all Teltonika vehicle trackers.

In case of the driver alert function, please note that the device must have DOUT for this feature to work.

What is also important, there are two sources for Green Driving operation – GPS data and accelerometer. The desired one can be selected in Configurator. GPS data is pretty reliable and does not require any additional effort to make it work. On the other side, accelerometer data is more precise and ensures uninterrupted operation even when GPS signal is not available, for example, in tunnels or underground parking lots. However, in order to utilize accelerometer data correctly, the device has to perform autocalibration process, which is automatic, as the name implicates, but may take some time.

Configuration

1. Prerequisites:

1.1. Read through First start guide

2. Configuration of Green driving scenario:

Before configuring Green driving solution it is important to set up GPRS settings for a device.

2.1. GPRS settings

Parameter ID – Parameter name GPRS settings:


  • 2001 – APN
  • 2002 – APN username (if there are no APN username, empty field should be left)
  • 2003 – APN password (if there are no APN password, empty field should be left)


Server settings:

  • 2004 – Domain
  • 2005 – Port
  • 2006 – Data sending protocol (0 – TCP, 1 – UDP)



After successful GPRS/SERVER settings configuration, FMB920 device will synchronize time and update records to the configured server. Time intervals and default I/O elements can be changed by using Teltonika Configurator or SMS parameters. After familiarizing with devices first start guide and device's GPRS settings are set - configuration for Green driving can be done.

2.2. Configuration of Eco/Green driving scenario

Green - Eco driving.png


Parameter ID - Parameter name

  • 11000 - Scenario priority (0 - Disable, 1 - Low, 2 - High, 3 - Panic).
  • 11004 - Maximum Acceleration (m/s2).
  • 11005 - Maximum Braking (m/s2)
  • 11006 - Maximum Cornering (m/s2)
  • 11007 - Source (0 - GPS, 1 - Accelerometer). Green driving scenario according to selected data source.


  • 11019 - Advanced Eco Driving (0 - Disable, 1 - Enable). If enabled, Eco Driving Average (ID.: 11011) and / or Eco Driving Maximum (ID.: 11015) settings can be changed.
  • 11008 - Eco/Green Driving Duration (0 - Disable, 1 - Enable).
  • 7034 - ID of SMS recipient.
  • 8034 - SMS Text.
    Note: Maximum acceleration, braking and cornering values should be set according to vehicle type, power, weight and etc. Best values can be approached by practical testing.


2.3. Configuration of Excessive idling scenario

Idlingg.png


Parameter ID - Parameter name

  • 11200 - Scenario priority (0 - Disable, 1 - Low, 2 - High, 3 - Panic).


  • 11203 - Eventual settings (0 - Disable, 1 - Enable), if disabled - excessive idling data will come with periodical data.
  • 11205 - Time To Stopped (s). Represents how long vehicle should not move with engine ON.
  • 11206 - To To Moving (s). Represents how long vehicle should be moving with engine ON, to exit idle state.
  • 7033 - ID of SMS recipient.
  • 8033 - SMS Text.


Parameter ID - Parameter name

  • 11200 - Scenario priority (0 - Disable, 1 - Low, 2 - High, 3 - Panic).


  • 11203 - Eventual settings (0 - Disable, 1 - Enable), if disabled - excessive idling data will come with periodical data.
  • 11205 - Time To Stopped (s). Represents how long vehicle should not move with engine ON.
  • 11206 - To To Moving (s). Represents how long vehicle should be moving with engine ON, to exit idle state.
  • 7033 - ID of SMS recipient.
  • 8033 - SMS Text.

2.4. Configuration of Over Speeding scenario

Idlingg.png


Parameter ID - Parameter name

  • 11200 - Scenario priority (0 - Disable, 1 - Low, 2 - High, 3 - Panic).


  • 11203 - Eventual settings (0 - Disable, 1 - Enable), if disabled - excessive idling data will come with periodical data.
  • 11205 - Time To Stopped (s). Represents how long vehicle should not move with engine ON.
  • 11206 - To To Moving (s). Represents how long vehicle should be moving with engine ON, to exit idle state.
  • 7033 - ID of SMS recipient.
  • 8033 - SMS Text.


Quick start: From default configuration to Green driving records in one SMS:

"  setparam 11800:1;11801:0;11806:1;11000:2;11007:1;11200:2"

This SMS will set up Your device to send Trip, Eco/Green driving and Excessive idling data to Your previously provided server.

Note: Before SMS text, two space symbols should be inserted if no SMS username or password was set in SMS / Call settings.

3. BTAPP Mobile application

Business private.png

After making configuration for Your device, it is time to download BTAPP. Keep in mind, app and device connection is established via Blue-tooth. Devices by default come with Blue-tooth enabled and visible. After pairing to device - You can change the trip type of Your trips by performing a long press on the icon and confirming the change.










Parsing Green driving records

1. Prerequisites:

1.1. Open TCP/UDP port

1.2. Go to Java parser first start guide

2.Parsing example:

Unparsed received data in hexadecimal stream
000000000000005E08010000017716AE03D8010F0F22D720982E9C007E00120A002FFD1609E

F01F00150011505C80045010101FD03FE230BB5000BB60006423A0018002F430F8A4400000

901301100161200EC13FBD90F038402C7000003BD1003066802000100005F75

AVL Data Packet Part HEX Code Part
Zero Bytes 00 00 00 00
Data Field Length 00 00 00 5E
Codec ID 08 (Codec 8)
Number of Data 1 (Number of Total Records) 01
Timestamp 00 00 01 77 16 AE 03 D8 (Mon Jan 18 18:07:19 UTC 2021)
Priority 01
Longitude 0F 0F 22 D7
Latitude 20 98 2E 9C
Altitude 00 7E
Angle 00 12
Satellites 0A
Speed 00 2F
Event IO ID FD (AVL ID: 253, Name: Green driving type)
N of Total ID 16
N1 of One Byte IO 09
1’st IO ID EF (AVL ID: 239, Name: Ignition)
1’st IO Value 01
2’nd IO ID F0 (AVL ID: 240, Name: Movement)
2’nd IO Value 01
3’rd IO ID 15 (AVL ID: 21, Name: GSM Signal)
3’rd IO Value 05
4'th IO ID 50 (AVL ID: 80, Name: Data mode)
4'th IO Value 01
5'th IO ID C8 (AVL ID: 200, Name: Sleep Mode)
5'th IO Value 00
6'th IO ID 45 (AVL ID: 69, Name: GNSS Status)
6'th IO Value 01
7'th IO ID 01 (AVL ID: 1, Name: Digital Input 1)
7'th IO Value 01
8'th IO ID FD (AVL ID: 253, Name: Green driving type)
8'th IO Value 03 (01 - harsh acceleration, 02 - harsh braking, 03 - harsh cornering)
9'th IO ID FE (AVL ID: 254, Name: Green Driving Value)
9'th IO Value 23 ( Depending on green driving type: if harsh acceleration or braking - g*100 (value 123 ->1,23g). If Green driving source is "GPS" - harsh cornering value is rad/s*100. If source is "Accelerometer" - g*100.
N2 of Two Byte IO 0B
1’st IO ID B5 (AVL ID: 181, Name: GNSS PDOP)
1’st IO Value 00 0B
2’nd IO ID B6 (AVL ID: 182, Name: GNSS HDOP)
2’nd IO Value 00 06
3’rd IO ID 42 (AVL ID: 66, Name: External Voltage)
3’rd IO Value 3A 00
4'th IO ID 18 (AVL ID: 24, Name: Speed)
4'th IO Value 00 2F
5'th IO ID 43 (AVL ID: 67,Name: Battery Voltage)
5'th IO Value 0F 8A
6'th IO ID 44 (AVL ID: 68, Name: Battery Current)
6'th IO Value 00 00
7'th IO ID 09 (AVL ID: 9, Analog input 1
7'th IO Value 01 30
8'th IO ID 11 (AVL ID:17, Name: Axis X)
8’th IO Value 00 16
9'th IO ID 12 (AVL ID:18, Name: Axis Y)
9’th IO Value 00 EC
10'th IO ID 13 (AVL ID:19, Name: Axis Z)
10'th IO Value FB D9
11'th IO ID 0F (AVL ID: 15, Name: Eco score)
11'th IO Value 03 84
N4 of Four Byte IO 02
1'st IO ID 02 C7(AVL ID: 199, Name: Trip Odometer)
1’st IO Value 00 00 03 BD
2’nd IO ID 10 03(AVL ID: 16, Name: Total Odometer)
2’nd IO Value 06 68 80 20
Number of Data 2 (Number of Total Records) 01
CRC-16 00 00 5F 75



size


When vehicle parameters exceed the values of Max Acceleration, Max Braking or Max Cornering parameters, the scenario is activated: a record is generated, and digital output status is changed to 1 when configured. You can configure all three parameters in m/s2 units. The scenario is activated until the current Acceleration, Braking, or Cornering value decreases below the set parameter value.
Parameters used with Eco/Green Driving functionality are given in a table below.

Parameter name Description
Scenario Settings Enable/Disable Green driving functionality
Max Acceleration Value which can be reached while accelerating without triggering harsh acceleration event.
Max Braking Acceleration Value which can be reached while braking without triggering harsh braking event.
Max Cornering Acceleration Value which can be reached while cornering without triggering harsh cornering event.
Source Which source (GPS or accelerometer) data will be collected from.
Advanced Eco Driving When this parameter is enabled device uses an advanced Eco Driving algorithm and sends different IO (maximum, average) elements instead of IO to server. More details about this option is decribed below.
Eco/Green Driving Duration If enabled, additional record with Eco/Green Driving event duration (ms) will be saved and send to server. When GPS is selected as the data source duration accuracy will be in seconds.
Output Control Which FMB1YX Digital Output will be used for accesory (buzzer, LED and etc.) activation/deactivation.
DOUT ON Duration A value in miliseconds (ms), for how long DOUT should be active.
DOUT OFF Duration A value in miliseconds (ms), for how long DOUT should be inactive.