Difference between revisions of "Speed Limiting Solution"

From Wiki Knowledge Base | Teltonika GPS
Line 18: Line 18:
  
  
<nowiki>*</nowiki>'''Solenoid Valve''' is optional for one of wiring schemes shown below
+
<nowiki>*</nowiki>'''Solenoid Valve''' is optional for one of the wiring schemes shown below
  
 
==Installation==
 
==Installation==

Revision as of 14:14, 23 November 2021

Main Page > General Information > Usage scenarios > Speed Limiting Solution

Introduction

Due to the accidents caused by over speeding, corporate fleet businesses and insurance companies suffer from huge losses in most of the countries globally. This can often lead to a loss in productivity, reduction in revenue, paying insurance costs (if it’s the driver’s fault), as well as medical and collateral damage costs. To help resolve this major concern, here at Teltonika Telematics we have developed and manufactured a unique GPS tracker with the speed limiter feature.

Solution description

Utilizing a modern and comprehensive GPS tracking method allows you to monitor driver (including novice) behaviour, improve safety, and reduce the fleet running costs and legal liability. And that is where Teltonika MSP500 comes into the play.

Teltonika MSP500 is a special tracking terminal with GNSS/GSM/Bluetooth 4.0 connectivity, internal GNSS/GSM antennas, RS232 interface, internal Ni-Mh battery, and waterproof IP65 casing. The device has been specifically designed with the key feature – speed limiting control.

What you need for a solution?

  • The SIM card in order to get data to your server
  • FOTA WEB to remotely send the configuration to the device.
  • *Solenoid Valve


*Solenoid Valve is optional for one of the wiring schemes shown below

Installation

MSP500 tracker can be connected in 3 different ways based on the speed limiting scenario that will be implemented. It’s important to hide the tracker, so it would not be a simple task for the thieves to find and unplug it.

Although devices have high gain antennas it’s important to mount devices with stickers on top and in metal-free space. The device should be firmly fixed to the surface or cables. Please make sure, that device is not fixed to heat emitting or moving parts.

To have a working solution it’s important to properly wire the devices. In the picture below it's shown how to correctly wire the device when implementing electronic throttle controller solution.

MSP500 schema 1.7.png

There are 3 ways of connecting the MSP500 device which are displayed below:

Elthrottlecontr.png
Fuel Pump Installation.png
Solenoid Installation.png


During installation please follow recommendations in order to avoid damaging device and vehicle:

  • Wires should be connected while the module is not plugged in.
  • Be sure that after the car computer falls asleep, power is still available on the chosen wire. Depending on the car, this may happen in a 5 to 30 minutes period.
  • When the module is connected, be sure to measure the voltage again if it did not decrease.
  • The ground wire is connected to the vehicle frame or metal parts that are fixed to the frame.

Configuration

1. Prerequisites:

1.1. Read through First start guide

1.2. Understanding of possible Sleep modes.

2. Speed limiting configuration:

Parameter ID – Parameter name GPRS settings:


  • 2001 – APN
  • 2002 – APN username (if there are no APN username, empty field should be left)
  • 2003 – APN password (if there are no APN password, empty field should be left)



Server settings:

  • 2004 – Domain
  • 2005 – Port
  • 2006 – Data sending protocol (0 – TCP, 1 – UDP)



After successful GPRS/SERVER settings configuration, MSP500 device will synchronize time and update records to the configured server. Time intervals and default I/O elements can be changed by using Teltonika Configurator or SMS parameters.


Sleep settings:

  • 102 – Sleep settings(0 – Disable, 1 – Gps sleep, 2 – Deep sleep, 3 – Online Deep sleep, 4 – Ultra sleep)

Note: This scenario will not work with Deep Sleep and Ultra Sleep modes, since they disable the device's GSM module to save power.


To setup the speed limiting feature in the configurator we should navigate to Features → Over Speeding where we would set a priority for the event, speed source and DOUT 1 for the relay to work properly.

Overspeeding feature.png


Over speeding settings

  • 11100 – Scenario settings(0 – Disable, 1 – Low Priority, 2 – High Priority, 3 – Panic Priority)
  • 11104 - Max Speed (Default value - 90 km/h)
  • 13217 - Speed Source (0 - GNSS (Default), 1 - OBD, 2 - AIN1)
  • 13223 - Over speeding Hysteresis (Default value - 8%), value that determines what would be the threshold speed level that would activate the speed limiting feature
  • 11103 - Output Control (0 - None (Default), 1 - DOUT1), DOUT1 needs to be enabled to use the speed limiting feature








Quickstart: From default configuration to Speed Limiting solution in one SMS:

"  setparam 2001:APN;2002:APN_user;2003:APN_password;2004:Domain;2005:Port;2006:0;102:3;11100:2;11104:90;13217:0;13223:8;11103:1"


This SMS will set up your device to report the Speed Limiting scenario to the server.

Note: Before SMS text, two space symbols should be inserted if no SMS username or password was set in SMS \ Call settings.


Parsing information

1.Prerequisites:

1.1. Open TCP/UDP port

1.2. Read Java parser first start guide

2. Parsing example:

Unparsed received data in hexadecimal stream

00000000000000758E010000017CB7A57370000F0E53AE209AB86A007F00110D000000FF0015000800EF0100F00100500100150300C80000450100010000B30100 0A00B5000A00B6000600423FC900180000004300000044000000 1100220012FFBA0013FC34000F0000000200F10000601A0010002D97E0000000000100002136

AVL Data Packet Part HEX Code Part
Zero Bytes 00 00 00 00
Data Field Length 00 00 00 75
Codec ID 8E (Codec 8 Extended)
Number of Data 1 (Number of Total Records) 01
Timestamp 00 00 01 7C B7 A5 73 70 00 (Monday, October 25, 2021 4:30:46 PM GMT+03:00)
Priority 00
Longitude 0F 0E 53 AE
Latitude 20 9A B8 6A
Altitude 00 7F
Angle 00 11
Satellites 0D
Speed 00 00
Event IO ID 00 FF (Over Speeding)
N of Total ID 00 15
N1 of One Byte IO 00 08
1’st IO ID EF (AVL ID: 239, Name: Ignition)
1’st IO Value 01
2’nd IO ID F0 (AVL ID: 240, Name: Movement)
2’nd IO Value 01
3’rd IO ID 50 (AVL ID: 80, Name: Data Mode)
3’rd IO Value 01
4'th IO ID 15 (AVL ID: 21, Name: GSM Signal)
4'th IO Value 01
5'th IO ID C8 (AVL ID: 200, Name: Sleep Mode)
5'th IO Value 00
6'th IO ID 45 (AVL ID: 69, Name: GNSS Status)
6'th IO Value 00
7'th IO ID 01 (AVL ID: 1, Name: Digital Input 1)
7'th IO Value 01
8'th IO ID B3 (AVL ID: 179, Name: Digital Output 1 )
8'th IO Value 01
N2 of Two Byte IO 0A
1’st IO ID B5 (AVL ID: 181, Name: GNSS PDOP)
1’st IO Value 00 0A
2’nd IO ID B6 (AVL ID: 182, Name: GNSS HDOP)
2’nd IO Value 00 06
3’rd IO ID 42 (AVL ID: 66, Name: External Voltage)
3’rd IO Value 3F C9
4'th IO ID 18 (AVL ID: 24, Speed)
4'th IO Value 5F
5'th IO ID 43 (AVL ID: 67, Battery Voltage)
5'th IO Value 00 07
6'th IO ID 44 (AVL ID: 68, Battery Current)
6'th IO Value 00 C8
7'th IO ID 11 (AVL ID:17, Axis X)
7’th IO Value 00 22
8'th IO ID 12 (AVL ID:18, Axis Y)
8’th IO Value FF BA
9'th IO ID 13 (AVL ID:19, Axis Z)
9'th IO Value FC 34
10'th IO ID 0F (AVL ID: 15, ECO Score)
10'th IO Value 00 00
N4 of Four Byte IO 00 02
1'st IO ID F1 (AVL ID: 241, Name: Active GSM Operator)
1’st IO Value 00 00 00 10
2’nd IO ID 10 (AVL ID: 16, Name: Total Odometer)
2’nd IO Value 00 2D 97 E0
N8 of Eight Byte IO 00 00
NX of X Byte IO 00 00
Number of Data 2 (Number of Total Records) 01
CRC-16 00 00 7F CF

Demonstration in TAVL platform


TAVL: Open TAVL application → Select Client → Select Device → Select the date interval → Select Track→ Select Advanced → Chose Show button see in left down corner all the information.


Speed limiting is activated when max speed is exceeded. Relay is activated on DOUT1 which can either disable the acceleration pedal, turn off the fuel pump or close the solenoid valve. Only one scenario can be used per MSP500 device.